Hello there and welcome to the third tutorial on how to make a decent Tetris game.

If you haven’t read Tutorial #1 & Tutorial #2, please do so, otherwise you won’t understand most of this and next tutorials. So, let’s get started.

This time we are going to introduce a falling figure with various time steps that a user can control. At the end, where the figure won’t be able to fall anymore, we are going to simply map it’s blocks to game blocks array and drop some other figure – can’t get any simpler!

So, let’s get started.

If you take a look at a general tetris game, there are only two steps exist:

Step 1: Drop figure one line down

Step 2: Wait some little time if user considers to move a figure to left or right so it can fill the empty block space as shown in Picture 1.

---------------Repeat from Step 1---------------

We may also add a third step where user doesn’t actually do anything – a step where the game do something when eliminating full lines – let’s call it Step 3. So, here’s our new pipeline:

Step 1: Drop figure one line down

Step 2: Wait some little time if user considers to move a figure to left or right so it can fill the empty block space.

Step 3: Check if there are any full lines – if none, resume normal game state

Step 3.5: If there are, eliminate the bottom one neglecting any user input

Step 3.5.5: Go to step 3

Or in a more C+ form:

LineFull = -1;

For (I=0; I<Number_of_lines; I++)

{

if(LineIsFull(I))

{

LineFull = I;

Break;

}

}

If(LineFull !=-1)

{

Do animations for that line…

}

else

{

Aquire user input

Etc

}

Pretty simple as it seems here, but harder in actual implementation of the algorithm.

Let’s introduce a function bool LineIsFull(int line_index) that will be checking for fullness of the line with given index:

bool CTetrisGame::LineIsFull(unsigned int line_index)

{

int num_blocks_x = Width(Window) / (BlockSize + BlockSpacing);

for (int x=0; x<num_blocks_x; x++)

{

if(m_ppTetrisMatrix[line_index][x] == NULL)

return false;

}

return true;

}

Also, we have to add a function in which we are going to do all state checks, line eliminations et cetera. Let’s call it Update() and we are going to call it before actually drawing the whole thing.

One more idea: if a user would want to pause the game (e.g go to the menu screen), we are going to have to pause whole update process, but still draw it to the screen. So, let us introduce a variable into CTetrisGame class called m_eGameState that will keep track of our current game state. Also in file Common.h we add a definition for the variable TIME_AQUIRE_USER_INPUT that is equals to 500 – this variable will be the time (in milliseconds) that the user have to move figure left or right after the figure has fell one line down. To actually watch after the time passed and the current time, we add a variable in CtetrisGame called m_fLastTime, and we can retrieve the time by firstly declaring a timer variable as CTimer m_Timer as a member of aforementioned class.

Let’s start with the hardest part - the Update() function:

void CTetrisGame::Update()

{

if(m_eGameState == TetrisGame_Paused)

return;

int num_blocks_x = WINDOW_WIDTH / (BLOCK_SIZE + BLOCK_SPACING);

int num_blocks_y = WINDOW_HEIGHT / (BLOCK_SIZE + BLOCK_SPACING);

If our game state is normal, proceed..

if(m_eGameState == TetrisGame_Normal)

{

Check the amount of time passed since last update

double CurrentTime = m_Timer.getAbsoluteTime();

if(CurrentTime - m_fLastTime >= TIME_AQUIRE_USER_INPUT) // If the time given to aquire user input has passed

{

If a figure cannot be moved anymore downwards…

if(Move(DISPLACE_DOWN, true) == false) // Our figure cannot move down anymore, map it to game blocks array

{

Check for full lines since there has to be no more user input

for (int i=0; i<num_blocks_y; i++)

{

if(LineIsFull(i))

{

There is a full line, assign the index and break from the loop

m_iFullLine = i;

m_eGameState = TetrisGame_EliminatingLine;

break;

}

}

If there’s no full line, drop a new figure

if(m_iFullLine == -1)

DropRandomFigure();

}

else

{

Our figure CAN be moved down, so move it now

Move(DISPLACE_DOWN, false);

Update last time

m_fLastTime = CurrentTime;

}

}

If there are any full lines (from the check above) - animate that line until the end

if(m_eGameState == TetrisGame_EliminatingLine)

{

If AnimateLine returns false, it means that all blocks have finished their current animation

if(AnimateLine(m_iFullLine))

{

Line blocks animations are complete, remove this line from game blocks array

for (int i=0; i<num_blocks_x; i++)

m_ppTetrisMatrix[m_iFullLine][i] = NULL;

Shift above lines down

ShiftLines(m_iFullLine);

Restore memeber variables for next check

m_eGameState = TetrisGame_Normal;

m_iFullLine = -1;

}

}

}

Pretty hard… Ummm.. Let’s see the way it goes.

Firstly we test if the game is paused, and if it is, we do nothing in Update() (e.g return – exit). Then we check for the time passed, and if it exceeds the defined value, we drop the figure one line down –and here where the trick lies. Since we do not change the game state, it simply goes again thru the same part it went before for the SAME amount of time - in our game it is 500 msecs before dropping figure again one line down.

Pretty tricky, in my old version I’ve used 3 phases (drop figure down, wait for user input, check for full lines), here we are using only 2! A much more elegant and simpler approach (.

Okay, after we’re done with user input and figure dropping, we move onto lines checking. Here it is very simple – animate current line until all blocks animations are complete (AnimateLine() returns false), and after that remove that line blocks from the game blocks array and shift above lines down and restore game state and line index.

Let’s move on. Now we need to add auxiliary functions: ShiftLines() and DropRandomFigure(). I’ve copied the code from InitGL() to create a figure (square) into DropRandomFigure() since that’s about what we need now - later on we add a random number generator to generate truly random figures. Let’s see what its contents are

void CTetrisGame::DropRandomFigure()

{

CTetrisFigure *figure = new CTetrisFigure;

figure->Create(4);

int num_blocks_x = WINDOW_WIDTH / (BLOCK_SIZE + BLOCK_SPACING);

int num_blocks_y = WINDOW_HEIGHT / (BLOCK_SIZE + BLOCK_SPACING);

figure->GetBlock(0)->SetPosX(num_blocks_x / 2);

figure->GetBlock(0)->SetPosY(num_blocks_y - 2);

figure->GetBlock(1)->SetPosX((num_blocks_x / 2) + 1);

figure->GetBlock(1)->SetPosY(num_blocks_y - 2);

figure->GetBlock(2)->SetPosX((num_blocks_x / 2) + 1);

figure->GetBlock(2)->SetPosY(num_blocks_y - 1);

figure->GetBlock(3)->SetPosX(num_blocks_x / 2);

figure->GetBlock(3)->SetPosY(num_blocks_y - 1);

m_pCurrentFigure = figure;

MapFigure(m_pCurrentFigure, true);

}

As I said, a pretty copy & paste task.

Let’s see how ShiftLines() function works:

void CTetrisGame::ShiftLines(unsigned int line_eliminated)

{

int num_blocks_x = WINDOW_WIDTH / (BLOCK_SIZE + BLOCK_SPACING);

int num_blocks_y = WINDOW_HEIGHT / (BLOCK_SIZE + BLOCK_SPACING);

For all lines above the eliminated one…

for (int i=line_eliminated+1; i<num_blocks_x; i++) // Remeber, we are shifting lines that are above the eliminated one

{

Shift this line down

for (int j=0; j<num_blocks_x; j++)

{

Move this line down with coordinates

if(m_ppTetrisMatrix[i][j] !=NULL)

m_ppTetrisMatrix[i][j]->Move(DISPLACE_DOWN, false);

Move line down in pointers (inside game blocks array)

m_ppTetrisMatrix[i-1][j] = m_ppTetrisMatrix[i][j];

Eliminate moved line in pointers (inside game blocks array)

m_ppTetrisMatrix[i][j] = NULL;

}

}

}

And that’s it, we’re done! Now let’s see how our game looks now on the screen!

Some minor things that are left – add these lines to InitiGL():

gTetrisGame.Create();

gTetrisGame.DropRandomFigure();

…and we will go more deeply into animation of the blocks in our next tutorial, I promise!

Cyas all!

